DeCodi-Fi: A Cost-Effective Polymerase for High-Quality **Genome Assembly of Marine Sediment Bacteria**

A. Bisquertt¹, F.Fuentes¹, J.Gimpel², I. Marx², I. <u>Arriagada²</u>, S. Kamkar², M. Rozas². ¹CodeBreaker Bioscience, Santiago, Región Metropolitana, Chile ²Kura Biotech Inc, Atlanta, GA, USA

INTRODUCTION

The genus *Beggiatoa* is an indicator of organic pollution in marine sediments near salmon farms. It also holds significant ecological importance for sulfur cycling, making it a compelling target for genetic analysis. However, assembling the genome of Beggiatoa is challenging due to its difficulty in cultivation and limited prior genome characterization. In this study, CodeBreaker Bioscience validated DeCodi-Fi, a novel high-fidelity polymerase, as an efficient and cost-effective tool for library amplification in shotgun analyses of the Beggiatoales order. DNA libraries from enriched sediment samples from Aysén region (Chile) were successfully amplified using Decodi-Fi, generating 18 high-quality Metagenome-Assembled Genomes (MAGs), including 4 from Beggiatoales. The results demonstrate that DeCodi-Fi achieves MAGs quality comparable to, and in some cases surpassing, widely used polymerases such as in the 'Illumina Enhanced PCR Mix,' highlighting DeCodi-Fi's cost-effectiveness for assembling complex bacterial genomes.

METHODS

Five sediment samples from the Aysén region of Chile, near a salmon farm, were collected and enriched ex-situ, followed by DNA extraction and library preparation. Tagmentation libraries were generated using the manufacturer's instructions for 'Illumina DNA Prep,' with 'Illumina Enhanced PCR Mix'(EPM) as one treatment(default). For the 'DeCodi-Fi All-in-One Mix' treatment, the 'Enhanced PCR Mix' was replaced with DeCodi-Fi All-in-One Mix. The sequencing was performed using a P1 cartridge with 600 cycles on an Illumina NextSeq 1000 system. The sample inference was performed using the Bug-Buster v1.0 workflow with parameters-assembly_mode"assembly"-include_binning -semibin_env_model "ocean" (https://github.com/gene2dis/BugBuster). Human DNA was removed by mapping the reads against the human reference genome T2T-CHM13v2.0 (NCBI accession number GCA_000001405.1) and the PhiX genome (NCBI accession number NC_001422). Taxonomic assignment of MAGs was performed using the Genome Taxonomy Database (GTDB) release 220.

LIBRARY PREPARATION QUALITY CONTROL

Minimal Loss and Contamination with DeCodi-Fi

Figure 1 displays the total reads retained across various filtering steps in the bioinformatics pipeline after using two methods of library amplification: Illumina Enhanced PCR Mix and DeCo di-Fi All in One Mix. Both methods show similar retention rates through quality filters (Fastp, Bowtie phiX, and Bowtie human), indicating well-prepared libraries with minimal loss and conta mination. Read count differences between treatments are not significant and may be attributed to pipetting variability.

20M

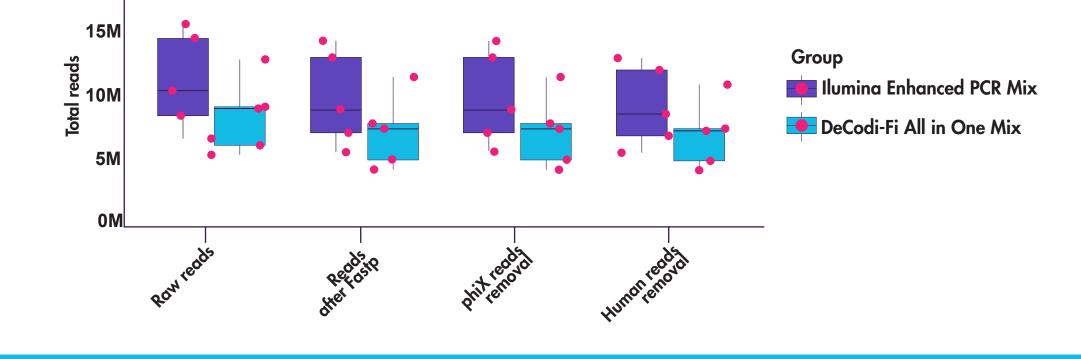


Figure 1: Number of reads per sample(5) after quality filtering, including raw reads, quality control(Fastp), and removal of phiX and human contaminants in Illumina Enhanced PCR Mix and DeCodi-Fi All in One Mix treatments.

MAGS COMPLETENESS

Improved Completeness and Lower Contamination with DeCodi-Fi

By pooling data from five sediment samples, 18 MAGs were identified for each treatment. Figure 2 presents the completeness and contamination percentages for refined MAGs from both treatments. On average, DeCodi-Fi outperformed Illumina, achieving higher completeness (95.8%) and lower contamination (1.1%), while showing less variability between MAGs. Both treatments recovered the same 18 MAGs, as shown in Figure 3, confirming that DeCodi-Fi is comparable to Illumina Enhanced PCR Mix in MAGs recovery. These findings highlight DeCodi-Fi as a strong alternative for shotgun metagenomic analyses, delivering MAGs with improved completeness and lower contamination compared to established methods.

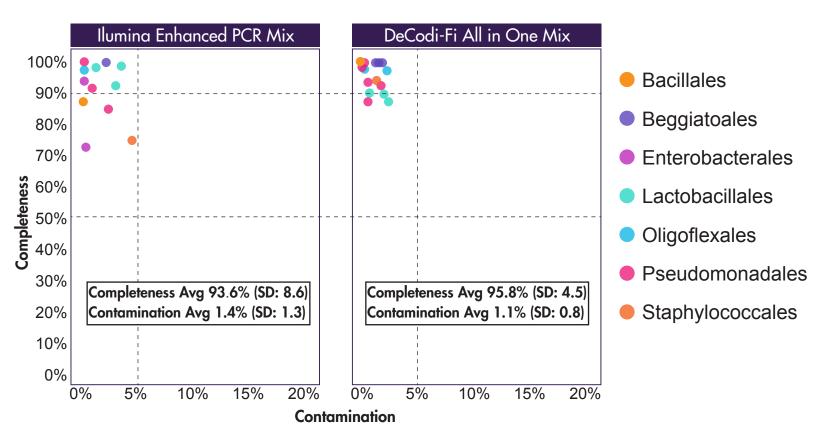


Figure 2: Completeness and contamination of 36 refined MAGs from five pooled samples: 18 amplified with Illumina Enhanced PCR Mix and 18 with DeCodi-Fi All-in-One Mix. Colors indicate MAG orders. Avg=Average. SD=Standard Deviation

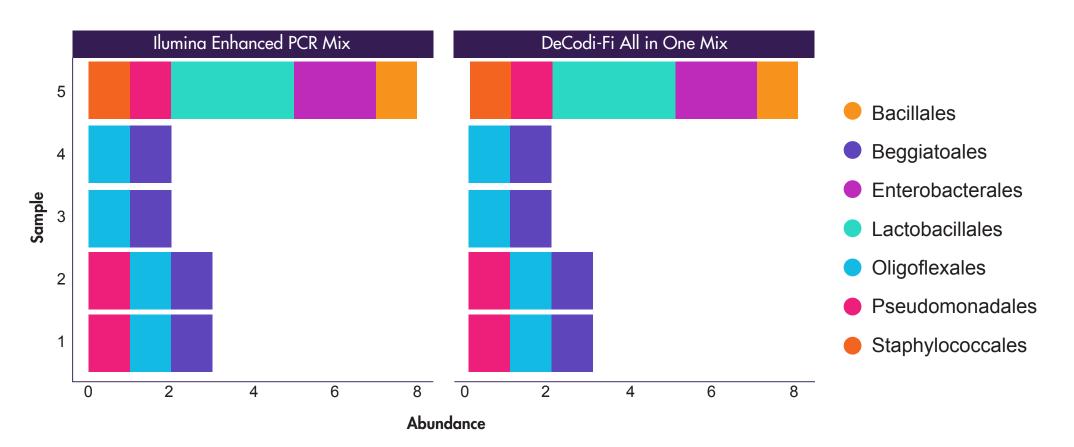


Figure 3: Distribution of MAGs at the order level across five enriched-sediment samples amplified with Illumina Enhanced PCR Mix and DeCodi-Fi All-in-One Mix.

DeCodi-Fi Polymerase: An Effective Choice for good Quality Genome Assemblies

MAGs with completeness below 90% (in both treatments) and one Beggiatoales MAG, included as an Order of interest, are shown in Table 1. DeCodi-Fi consistently achieved higher completeness, larger genome sizes, and more total coding sequences, reflecting a more comprehensive recovery of genomic content. While Illumina Enhanced PCR Mix exhibited higher Contig N50 values in certain cases, Decodi-Fi showed significantly better N50 values for the 2 lowest samples (Lactobacillales and Staphylococcales). These results underscore DeCodi-Fi's effectiveness in delivering high-quality genome assemblies.

MAGs	Treatement	Genome Size (bp)	Total Coding Sequences	Completeness (%)	Contamination (%)	Contig N50 (bp)
Pseudomonadales	Illumina Enhanced PCR Mix	3,113,425	2,944	84.92	2.26	10,245
	DeCodi-Fi All in One Mix	3,232,124	2,991	88.29	0.66	10,075
Bacillales	Illumina Enhanced PCR Mix	3,445,592	3,456	87.26	0.02	294,549
	DeCodi-Fi All in One Mix	3,971,685	3,456	100	0.02	269,899
Enterobacterales	Illumina Enhanced PCR Mix	3,317,98	3,043	72.44	0.28	93,660
	DeCodi-Fi All in One Mix	4,340,52	4,024	92.61	1.73	83,269
Lactobacillales	Illumina Enhanced PCR Mix	1,765,43	1,972	92.45	2.87	6,515
	DeCodi-Fi All in One Mix	1,586,692	1,726	87.05	2.42	8,742
Lactobacillales	Illumina Enhanced PCR Mix	2,915,935	3,148	98.91	3.38	12,170
	DeCodi-Fi All in One Mix	2,626,467	2,803	89.92	2	12,468
Staphylococcales	Illumina Enhanced PCR Mix	2,162,581	2,670	74.53	4.36	2,424
	DeCodi-Fi All in One Mix	2,395,142	2,415	93.8	1.4	9,987
Beggiatoales	Illumina Enhanced PCR Mix	6,649,855	5,260	100	2.01	27,666
	DeCodi-Fi All in One Mix	6,786,311	5,356	100	1.77	26,811

Table 1: This table compares seven MAGs: six with completeness below 90% (from both treatments) and one Beggiatoales MAG. Genome size, total coding sequences, completeness, contamination, and Contig N50 are presented for each treatment to assess assembly quality. Parameters in which DeCodi-Fi outperforms are highlighted in bold.

CONCLUSION

- DeCodi-Fi is a robust and cost-effective alternative for shotgun metagenomics sequencing, and reduces costs by 2X.
- Produces high-quality libraries with high completeness, and low contamination.
- Demonstrates strong potential for efficiently assembling challenging bacterial genomes and metagenomes.

Download Poster:

Visit our website