

UPPSALA

UNIVERSITET

Enzymatic and mass spectrometric methodology for the selective investigation of gut microbiota-derived metabolites Combining metabolomics with chemical biology methodologies

Ioanna Tsiara, Mário S.P. Correia, Daniel Globisch

ioanna.tsiara@kemi.uu.se, Department of Chemistry, Biomedical center, Uppsala University, Sweden Homepage: https://www.kemi.uu.se/bmc/research/analytical-chemistry/research-groups/globisch-group Follow us on Twitter @GlobischLab

The discovery of biomarkers is the initial and crucial step for the development of new and sensitive diagnostic tools. The detailed investigation of small molecule metabolites in human samples including serum, plasma, urine, feces and tissues, carries a great potential for the identification of unknown biomarkers.^[1] These endogenous biomolecules are altered in structure or quantity in a disease state compared to a normal "healthy" state. The field of small molecule biomarkers discovery has been termed "metabolomics", in which all small molecules are analyzed in parallel using diverse separation and detection methods including mass spectrometric analysis.^[1] The parallel analysis of these molecules is challenging as these metabolites may differ radically in structure, polarity and other physical properties. Our interdisciplinary research group focuses on the development of new methodologies to overcome limitations in sample preparation and analysis. We are utilizing techniques at the interface of chemistry and biology to allow advanced quantitative and qualitative metabolite analysis for the discovery of disease-specific biomarker's biosynthesis has tremendous potential for the identification of new drug targets and would lead to new opportunities for disease prevention, management and personalized medicine.

Phase II Modifications and Gut Microbiota

Glucuronidation and sulfation of metabolites are the two major phase II modifications in humans, which play a critical role in the xenobiotics clearance process and gut microbiota-host co-metabolism.

Host microbiota co-metabolism^[2,3,4,5]

► Dietary sulfated metabolome analysis^[4]

New recombinant enzymes^[6]

Excellent chromatographic separation

273.0069

► BGTurbo and ASPC urine application

► Full hydrolysis within 1 hour

Name	m/z	Retention time	Name	m/z	Retention time
<i>p</i> -Cresol glucuronide	283.0826	9.66	<i>p</i> -Cresol sulfate	187.0075	9.22
Indoxyl glucuronide	308.0780	8.61	Indoxyl sulfate	212.0023	7.71
Dihyroxy-1H-indole glucuronide I	324.0729	5.75	3-Methoxyphenol sulfate	203.0022	8.73
Acetaminophen	326.0884	6.07	Thymol Sulfate	229.0544	13.09
glucuronide			Hippuric acid sulfate	258.0082	6.75
Urolithin A- 3-O-glucuronide	403.0678	9.80	Ferulic acid	273.0079	8.60
11-beta-Hydroxyandroste- rone-3-glucuronide	481.2450	13.79	Sinapic acid sulfate	303.0186	8.45

Column: Acquity UPLC HSS T3 1.8 µM

[1] J. A. Gilbert, M. J. Blaser, ... R. Knight, Nat. Med. 2018, 24, 392-400; M. S. Donia, M. A Fischbach, Science, 2015, 349-395. [2] C. Ballet, M. S. P. Correia, L. P. Conway, T. L. Locher, L. C. Lehmann, N. Garg, M. Vujasinovic, S. Deindl, J. M. Löhr, D. Globisch, Chem. Sci., 2018, 9, 6233–6239.

[3] A. Jain, M.S.P.Correia, H. Meistermann, M. Vujasinovic, J.M. Löhr, D. Globisch, *J Pharm Biomed Anal.*, **2021**, 195, 113818. [4] M.S.P Correia, A. Jain, W. Alotaibi, P. Young Tie Yang, A. Rodriguez-Mateos, D. Globisch, Free Radic. Biol. Med., 2020, 160, 745-754.

[5] M.S.P Correia, M. Rao, C. Ballet, D. Globisch, Chembiochem, 2019, 20 (13), 1678-1683. [6] Collaboration with Kura Biotec - https://www.kurabiotec.com

