

Fast Analysis of 28 Benzodiazepines and Metabolites in Hydrolyzed & Non-Hydrolyzed Urine by LC-MSMS

Daniel Aguilar¹, Isaiah Jewell¹, Garry Milman², Marta Concheiro¹

¹John Jay College of Criminal Justice - CUNY, New York, NY; ²National Spine & Pain Centers, Columbia, MD

Urine Prep Hydrolysis B-One[®] & BG-Turbo[®] Recombinant β-Glucuronidase

Background

Benzodiazepines, a drug group of tranquilizers with sedative, hypnotic properties, are commonly encountered in different types of forensic cases, such as overdoses and in victims of drug facilitated sexual assault (DFSA). Fast and easy-to-use multi-analyte procedures covering a wide analytical range and achieving the required sensitivity for challenging cases, such as DFSA, are necessary.

Aims

- 1) To develop fast and simple analytical methods for the simultaneous determination of 28 benzodiazepines and metabolites in hydrolyzed and non-hydrolyzed urine. The target analytes were: 3-hydroxyflubromazepam, 3-7-aminoclonazepam. hydroxyphenazepam. 7aminoflunitrazepam, alpha-hydroxy-alprazolam, alpha-hydroxymidazolam, alpha-hydroxy-triazolam, alprazolam, bromazepam, clobazam, clonazepam, delorazepam, desalkylflurazepam, diazepam, etizolam, flubromazepam, flunitrazepam, flurazepam, lorazepam, lorazepam-glucuronide, midazolam, nordiazepam, oxazepam, oxazepam-glucuronide, phenazepam, temazepam, temazepam-glucuronide, and triazolam.
- 2) To compare the hydrolysis efficacy and performance of 2 rapid enzymes, B-One[®] recombinant β-Glucuronidase and BG-Turbo[®] glycerol free high efficiency recombinant β -Glucuronidase (Kura Biotech, Puerto Varas, Chile).

Methods

Urine Prep No Hydrolysis

1) Transfer 50 µL urine into shell vial

- 2) Fortify with 25 µL lstd mixture (9 deuterated analogs) in water at 100 ng/mL
- 3) Add 150 µL water
- 4) Vortex
- 5) Filter in the vial (nanoFilter Vial[™] PES 0.2 μm)
- 6) Inject into the LC-MSMS

Fig. 1. MRM chromatogram of 28 benzodiazepines and metabolites in non-hydrolyzed urine at 10 ng/mL.

100 ng/mL. both enzymes performed a complete hydrolysis.

temazepam-glucuronide at concentrations above 1000 ng/mL.

nordiazepam (0-99.6 vs. >100ng/mL).

- · All the methods, without hydrolysis and with hydrolysis with both enzymes, were linear between 5 and 100 ng/mL.
- · Limits of detection (LOD) were between 1 and 5 ng/mL, depending on the analyte.
- No loss was observed within +/- 20% for any of the 28 analytes due to filtration with PES filters.
- · No exogenous nor endogenous interferences were observed (n=10).

Ion suppression (red), ion enhancement (lavender).				
	B-One		BG-Turbo	
Analyte	ME Urine 10	ME Urine 100	ME Urine 10	ME Urine 100
Alprazolam	87.9	97.1	117.1	145.7
Alpha-OH-Alprazolam	79.0	73.3	83.6	86.2
Bromazepam	113.7	101.3	106.9	110.2
Clonazepam	86.0	85.9	90.1	91.6
7-Aminoclonazepam	95.6	97.5	86.1	93.7
Clobazam	158.4	123.5	133.6	114.1
Diazepam	69.7	64.6	74.6	71.3
Nordiazepam	115.5	108.2	114.2	114.3
Etizolam	127.6	112.5	130.3	114.2
Flubromazepam	79.2	76.8	91.3	92.1
3-OH-Flubromazepam	66.7	64.3	77.4	79.4
Flunitrazepam	75.6	69.9	82.2	83.9
7-Aminoflunitrazepam	63.2	76.0	71.8	83.5
Flurazepam	141.6	123.7	176.7	126.7
Desalkylflurazepam	64.7	62.2	73.4	72.2
Lorazepam	92.6	89.5	99.8	106.4
Delorazepam	123.2	113.0	123.3	116.9
Midazolam	56.8	49.4	50.0	59.4
Alpha-OH-Midazolam	79.9	78.9	78.9	83.7
Oxazepam	83.6	85.2	87.3	90.2
Phenazepam	111.1	105.7	114.4	112.3
3-OH-Phenazepam	82.6	78.2	96.5	97.2
Triazolam	103.9	93.0	112.4	104.5
Alpha-OH-Triazolam	79.6	76.7	95.3	92.2
Temazepam	99.7	95.4	104.4	106.8

Table 1. Matrix effect (ME, %) in urine (n=10) of 25 benzodiazepines

at 10 and 100 ng/mL for B-One and BG-Turbo hydrolyzed samples.

Conclusions & Discussion

- 1) We described a fast and easy procedure for the analysis of 28 benzodiazepines in urine (25 and 3 glucuronides).
- 2) The methods were sensitive, achieving a LOD between 1 and 5 ng/mL in 50 µL urine.
- 3) The sample preparation consisted in sample dilution and filtration within the injection vial.
- 4) The enzymatic hydrolysis was performed in the vial and at room temperature in less than 5 min.
- 5) Both enzymes showed excellent efficacy and minimal matrix effects.

Research Support

Support for travel and reagents was funded by Kura Biotech (Puerto Varas, Chile)

Support for student stipends, supplies, and/or equipment used in this research was supplied by the Program for Research Initiatives in Science and Math (PRISM) at John Jay College, PRISM is funded by the Title V program within the U.S. Department of Education the PAESMEM program through the National Science Foundation; and New York State's Graduate Research and Technology Initiative and NYS Education Department CSTEP program.

In fortified samples with lorazepam-glucuronide, oxazepam-glucuronide and temazepam-glucuronide at 10 and

benzodiazepines (non-hydrolyzed sample concentration vs. hydrolyzed sample concentration) of midazolam (0 vs.

62.5-102ng/mL), hydroxy-midazolam (0-12.9 vs. >100ng/mL), hydroxy-alprazolam (0-4.7 vs. >100ng/mL) and

Fig. 2. MRM chromatogram of authentic sample 2 in non-hydrolyzed and hydrolyzed urine by B-One and BG-Turbo enzymes.